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a b s t r a c t

Time and space assembly line balancing considers realistic multiobjective versions of the classical assem-
bly line balancing industrial problems involving the joint optimization of conflicting criteria such as the
cycle time, the number of stations, and/or the area of these stations. In addition to their multi-criteria
nature, the different problems included in this field inherit the precedence constraints and the cycle time
limitations from assembly line balancing problems, which altogether make them very hard to solve.
Therefore, time and space assembly line balancing problems have been mainly tackled using multiobjec-
tive constructive metaheuristics. Global search algorithms in general – and multiobjective genetic algo-
rithms in particular – have shown to be ineffective to solve them up to now because the existing
approaches lack of a proper design taking into account the specific characteristics of this family of prob-
lems. The aim of this contribution is to demonstrate the latter assumption by proposing an advanced
multiobjective genetic algorithm design for the 1/3 variant of the time and space assembly line balancing
problem which involves the joint minimization of the number and the area of the stations given a fixed
cycle time limit. This novel design takes the well known NSGA-II algorithm as a base and considers the
use of a new coding scheme and sophisticated problem specific operators to properly deal with the said
problematic questions. A detailed experimental study considering 10 different problem instances (includ-
ing a real-world instance from the Nissan plant in Barcelona, Spain) will show the good yield of the new
proposal in comparison with the state-of-the-art methods.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

An assembly line is made up of a number of workstations, ar-
ranged either in series or in parallel. These stations are linked to-
gether by a transport system that aims to supply materials to the
main flow and move the production items from one station to
the next one. Since the manufacturing of a production item is di-
vided into a set of tasks, a usual and difficult problem is to deter-
mine how these tasks can be assigned to the stations fulfilling
certain restrictions. The aim is to get an optimal assignment of sub-
sets of tasks to the stations of the plant. Moreover, each task re-
quires an operation time for its execution which is determined as
a function of the manufacturing technologies and the employed
resources.

A family of academic problems – called simple assembly line
balancing problem (SALBP) – was proposed to model this situation
(Baybars, 1986; Scholl, 1999). Taking this family as a base and add-
ing spatial information to enrich the problem, Bautista and Pereira

recently proposed a more realistic framework: the time and space
assembly line balancing problem (TSALBP) (Bautista & Pereira,
2007). It emerged due to the study of the specific characteristics
of the Nissan automotive plant located in Barcelona, Spain. Hence,
this framework considers an additional space constraint to become
a simplified version of real-world problems. In addition, TSALBP
formulations have a multi-criteria nature as many real-world prob-
lems. These formulations involve minimising three conflicting
objectives: the cycle time of the assembly line, the number of sta-
tions, and their area. One of these formulations is the TSALBP-1/3
variant which tries to minimise the number and the area of the sta-
tions for a given product cycle time. This is a very usual situation in
real-world factories as the said Nissan automotive plant where the
annual production is usually set by market objectives.

One of the most important aspects in TSALBP-1/3 is the set of
constraints, including the set of tasks precedences and the cycle
time limitation for each station. Since constructive metaheuristics
such as ant colony optimization (ACO) (Dorigo & Stützle, 2004)
have a good capability to deal with constrained combinatorial opti-
mization problems, they have demonstrated to be more appropri-
ate than non constructive procedures (Glover & Kochenberger,
2003) to solve the TSALBP-1/3 up to now. Specifically, in Chica,
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Cordón, Damas, Bautista, and Pereira (2008a, 2010) the authors
proposed the use of a multiobjective ACO algorithm based on the
multiple ant colony system (MACS) (Barán & Schaerer, 2003) for
this problem. The MACS algorithm obtained the best results in
comparison with a multiobjective random search, a multiobjective
randomised greedy algorithm, and a multiobjective genetic algo-
rithm (Chica et al., 2010). In particular, the latter method – a mul-
tiobjective extension of an existing genetic algorithm for SALBP
(Sabuncuoglu, Erel, & Tayner, 2000) based on the use of the well-
known NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002), the
state-of-the-art evolutionary multiobjective optimization (EMO)
algorithm – showed a very low performance.

Although single and multiobjective genetic algorithms have
been successfully applied to many different industrial engineering
problems as supply chain optimization, job shop scheduling, plant
design, and packing and distribution (Altiparmak, Gen, Lin, &
Paksoy, 2006; Dietz, Azzaro-Pantel, Pibouleau, & Domenech,
2008; Gao, Gen, Sun, & Zhao, 2007; Leung, Wong, & Mok, 2008) –
and even to assembly and disassembly line balancing (Kim, Kim,
& Kim, 1996; McGovern & Gupta, 2007; Simaria & Vilarinho,
2004) – the fact that genetic algorithms require careful designs
in order to deal with constrained optimization problems is well
known (Michalewicz, Dasgupta, Riche, & Schoenauer, 1996;
Santana-Quintero, Hernández-Díaz, Molina, Coello, & Caballero,
2010). Hence, the weak performance of the latter multiobjective
genetic algorithm when solving the TSALBP-1/3 was due to its
inability to deal with the inherent problem characteristics and
not to any drawback related to the EMO approach followed. In fact,
EMO could be a powerful tool to accurately solve this very complex
problem.

Therefore, in this contribution a new design of a multiobjective
genetic algorithm is developed, also based on NSGA-II but incorpo-
rating specific components to appropriately deal with the TSALBP
constraints. On the one hand, a new individual representation will
be proposed which is more faithful to the solution phenotype and
thus more appropriate for the problem solving. On the other hand,
novel crossover, repair, and mutation operators will be designed to
overcome the non constructive nature of genetic algorithms when
dealing with the TSALBP constraints. Finally, a diversity induction
mechanism will be incorporated to obtain well spread Pareto
fronts.

Different variants of the proposed EMO algorithm design, based
on the use of only some of the latter components, will be consid-
ered to ensure the actual need of the cooperative action of all of
them in order to achieve the best performance. The resulting vari-
ants of the algorithm will be compared among them and the best
performing ones will be benchmarked with the existing multiob-
jective genetic algorithm and the state-of-the-art algorithm to
solve the problem, MACS-TSALBP-1/3. We will consider nine
well-known problem instances from the literature for this experi-
mental study. Furthermore, the algorithms will be applied to a
real-world problem instance from the Nissan industry plant in Bar-
celona. In order to evaluate the performance of the different meth-
ods, a detailed analysis of results will be developed considering the
usual multiobjective performance indicators (metrics).

This paper is structured as follows. In Section 2, the formulation
of the TSALBP-1/3 and the existing methods to solve it, i.e. the
MACS algorithm, a multiobjective randomised greedy algorithm,
and the multiobjective extension of the genetic algorithm for SAL-
BP, are reviewed. Then, our novel multiobjective genetic algorithm
design for the problem is described in Section 3. The used perfor-
mance indicators and problem instances, the developed experi-
ments, and the analysis of the obtained results to test the
performance of the different algorithms are presented in Section
4. Finally, in Section 5, some concluding remarks and proposals
for future work are provided.

2. Preliminaries

This section is devoted to describe some required preliminaries
to properly understand the work developed in this contribution.
First, the formulation of the TSALBP-1/3 is introduced. Then, the
composition of the different metaheuristic methods which have
been proposed in the literature to tackle this complex industrial
engineering problem is briefly reviewed.

2.1. The time and space assembly line balancing problem

The manufacturing of a production item is divided into a set V of
n tasks. Each task j requires a positive operation time tj for its exe-
cution. This time is determined as a function of the manufacturing
technologies and the resources employed. Each task j can be only
assigned to a single station k. A subset of tasks Sk (Sk # V) is thus
assigned to each station k (k = 1,2, . . . ,m). They are referred as its
workload.

Every task j has a set of ‘‘preceding tasks’’ Pj which must be
accomplished before starting that task. These constraints are rep-
resented by an acyclic precedence graph, whose vertices corre-
spond to the tasks and where a directed arc hi, ji indicates that
task i must be finished before starting task j on the production line.
Thus, task j cannot be assigned to a station that is before the one
where task i was assigned.

Each station k presents a station workload time t(Sk) that is
equal to the sum of the tasks’ duration assigned to it. In general,
the SALBP (Baybars, 1986; Scholl, 1999) focuses on grouping these
tasks into workstations by an efficient and coherent method. In
short, the goal is to achieve a grouping of tasks that minimises
the inefficiency of the line or its total downtime satisfying all the
constraints imposed on the tasks and stations.

On the other hand, there is a real need of introducing space con-
straints in the assembly lines’ design because of two main reasons:
(a) the length of the workstation is limited in the majority of the
situations, and (b) the required tools and components to be assem-
bled should be distributed along the sides of the line. Based on
these realistic features, a new real-like problem comes up.

In order to model it, Bautista and Pereira (2007) extended the
SALBP into the TSALBP by means of the following formulation: the
area constraint must be considered by associating a required area
aj to each task j. We can see in Fig. 1 the graph of the first eight tasks
of the real-world instance of Nissan. Each task has a time and area
information. The arcs denote the precedence relations between the
different tasks. For instance, task 4 requires an area of 1 unit, an oper-
ation time of 60, and it cannot start before tasks 1 and 5 finish.

Apart from the area of the tasks, every station k will require a
station area a(Sk), equal to the sum of the areas of all the tasks as-
signed to that station. This needed area must not be larger than the
available area Ak of the station k. For the sake of simplicity, Ak is as-
sumed to be identical for all the stations and denoted by A, where
A = maxk = 1, 2, . . . , mAk.

Overall, the TSALBP may be stated as: given a set of n tasks with
their temporal and spatial attributes, tj and aj, and a precedence
graph, each task must be assigned to just one station such that:

1. all the precedence constraints are satisfied,
2. there is not any station with a workload time t(Sk) greater than

the cycle time c,
3. there is not any station with a required area a(Sk) greater than

the global available area A.

The TSALBP presents different formulations depending on
which of the three considered parameters (c, the cycle time; m,
the number of stations; and A, the area of the stations) are tackled
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as objectives to be optimised and which others are provided as
fixed variables. The eight possible combinations result in eight dif-
ferent TSALBP variants. Within them, there are four multiobjective
variants depending on the given fixed variable: c, m, A, or none of
them. While the former three cases involve a bi-objective problem,
the latter defines a three-objective problem.

We will tackle one of these formulations, the TSALBP-1/3. It
consists of minimising the number of stations m and the station
area A, given a fixed value of the cycle time c. We chose this variant
because it is quite realistic in the automotive industry, our field of
interest, since the annual production of an industrial plant (and
therefore, the cycle time c) is usually set by market objectives. Be-
sides, the search for the best number of stations and area makes
sense if the goal is reducing costs and make workers’ day better
by setting up less crowded stations. More information about the
justification of the choice can be found in Chica et al. (2010).

2.2. Mathematical formulation of the TSALBP-1/3

According to the TSALBP formulation (Bautista & Pereira, 2007),
the 1/3 variant deals with the minimization of the number of sta-
tions, m, and the area occupied by those stations, A, in the assembly
line configuration. We can mathematically formulate this TSALBP
variant as follows:

Minf 0ðxÞ ¼ m ¼
XUBm

k¼1

max
j¼1;2;...;n

xjk; ð1Þ

f 1ðxÞ ¼ A ¼ max
k¼1;2;...;UBm

Xn

j¼1

ajxjk ð2Þ

subject to:

XLj

k¼Ej

xjk ¼ 1; j ¼ 1;2; . . . ;n ð3Þ

XUBm

k¼1

max
j¼1;2;...;n

xjk 6 m ð4Þ

Xn

j¼1

tjxjk 6 c; k ¼ 1;2; . . . ;UBm ð5Þ

Xn

j¼1

ajxjk 6 A; k ¼ 1;2; . . . ;UBm ð6Þ

XLi

k¼Ei

kxik 6
XLj

k¼Ej

kxjk; j ¼ 1;2; . . . ;n; 8i 2 Pj ð7Þ

xjk 2 f0;1g; j ¼ 1;2; . . . ;n; k ¼ 1;2; . . . ;UBm ð8Þ

where:

� n is the number of tasks,
� xjk is a decision variable taking value 1 if task j is assigned to sta-

tion k, and 0 otherwise,
� aj is the area information for task j,
� UBm is the upper bound for the number of stations m,
� Ej is the earliest station to which task j may be assigned,
� Lj is the latest station to which task j may be assigned,
� UBm is the upper bound of the number of stations. In our case, it

is equal to the number of tasks, and

Constraint in Eq. (3) restricts the assignment of every task to
just one station, (4) limits decision variables to the total number
of stations, (5) and (6) are concerned with time and area upper
bounds, (7) denotes the precedence relationship among tasks,
and (8) expresses the binary nature of variables xjk.

2.3. Previous approaches for the TSALBP-1/3

The specialised literature includes a large variety of exact and
heuristic problem-solving procedures as well as metaheuristics
for solving the SALBP (Scholl & Voss, 1996, 2006). Among them,
the use of genetic algorithms (Sabuncuoglu et al., 2000; Anderson
& Ferris, 1994; Kim, Kim, & Kim, 2000, 2009), tabu search (Chiang,
1998), simulating annealing (Heinrici, 1994), and ant colony opti-
mization (Bautista & Pereira, 2007; Blum, 2008) have been consid-
ered. Besides, multicriteria formulations of the SALBP have also
been tackled using genetic algorithms (Leu, Matheson, & Rees,
1994), differential evolution (Nearchou, 2008), and ant colony opti-
mization (McMullen & Tarasewich, 2006).

Fig. 1. A precedence graph which represents the first 8 tasks of the real-world instance of Nissan. Time and area information are shown next to each task. Task 31 is also
shown because of its precedence relation with respect to task 2.
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However, there are not many proposals for solving the multiob-
jective 1/3 variant of the TSALBP (Chica et al., 2010). Among them,
the following can be found: (a) a MACS algorithm, (b) a multiobjec-
tive randomised greedy algorithm, and (c) a multiobjective exten-
sion of the SALBP genetic algorithm proposed in Sabuncuoglu et al.
(2000). We briefly review these algorithms in the next three sub-
sections, as two of them will be considered as baselines for our
new proposal in the experimental study developed in Section 4.

2.3.1. The MACS algorithm for the TSALBP-1/3
MACS (Barán & Schaerer, 2003) was proposed as an extension of

ant colony system (ACS) (Dorigo & Gambardella, 1997) to deal with
multiobjective problems. The original version of MACS uses one
pheromone trail matrix and several heuristic information func-
tions. However, in the case of the TSALBP-1/3, the experimentation
carried out in Chica et al. (2010) showed that the performance was
better when MACS was only guided by the pheromone trail infor-
mation. Therefore, the heuristic information functions were not
used.

Since the number of stations is not fixed, the algorithm uses a
constructive and station-oriented approach (Scholl, 1999) to face
the precedence problem (as usually done for the SALBP, Scholl &
Becker, 2006). Thus, the algorithm will open a station and select
one task till a stopping criterion is reached. Then, a new station
is opened to be filled and the procedure is iterated till all the exist-
ing tasks are allocated.

The pheromone information has to memorise which tasks are
the most appropriate to be assigned to a station. Hence, a phero-
mone trail has to be associated to a pair (stationk, taskj),
k = 1, . . . ,n, j = 1, . . . ,n, with n being the number of tasks, so the
pheromone trail matrix has a bi-dimensional nature. Since MACS
is Pareto-based, the pheromone trails are updated using the cur-
rent non-dominated set of solutions (Pareto archive). Two sta-
tion-oriented single-objective greedy algorithms were used to
obtain the initial pheromone value s0.

In addition, a novel mechanism was introduced in the construc-
tion procedure in order to achieve a better search diversification–
intensification trade-off able to deal with the problem difficulties.
This mechanism randomly decides when to close the current sta-
tion taking as a base both a station closing probability distribution
and an ant filling threshold ai. The probability distribution is de-
fined by the station filling rate (i.e., the overall processing time of
the current set of tasks Sk assigned to that station) as follows:

pðclosing kÞ ¼

P
i2Sk

ti

c
ð9Þ

At each construction step, the current station filling rate is com-
puted. In case it is lower than the ant’s filling percentage threshold
ai (i.e., when it is lower than ai � c), the station is kept opened.
Otherwise, the station closing probability distribution is updated
and a random number is uniformly generated in [0,1] to take the
decision whether the station is closed or not. If the decision is to
close the station, a new station is created to allocate the remaining
tasks. Otherwise, the station will be kept opened. Once the latter
decision has been taken, the next task is chosen among all the can-
didate tasks using the MACS transition rule to be assigned to the
current station as usual. The procedure goes on till there is no more
remaining task to be assigned.

Thus, the higher the ant’s threshold, the higher the probability
of a totally filled station, and vice versa. This is due to the fact that
there are less possibilities to close it during the construction pro-
cess. In this way, the ant population will show a highly diverse
search behaviour, allowing the algorithm to properly explore the
different parts of the optimal Pareto front by appropriately distrib-
uting the generated solutions.

The interested reader is referred to Chica et al. (2010) for a com-
plete description of the MACS proposal for the TSALBP-1/3.

2.3.2. A multiobjective randomised greedy algorithm
A multiobjective randomised greedy algorithm for the TSALBP-

1/3 was also proposed in Chica et al. (2010) based on a diversifica-
tion generation mechanism which behaves similarly to a GRASP
construction phase (Feo & Resende, 1995).

In Chica et al. (2010) randomness is introduced in two pro-
cesses. On the one hand, allowing the selection of the next task
to be assigned to the current station to be randomly taken among
the best candidates. It starts by creating a candidate list of unas-
signed tasks. For each candidate task j, its heuristic value gj is com-
puted by measuring the preference of assigning it to the current
opened station. gj is proportional to the processing time and area
ratio of that task (normalised with the upper bounds given by
the time cycle, c, and the sum of all tasks’ areas, respectively), as
well as the ratio between the number of successors of task j and
the maximum number of successors of any eligible task. Then, all
the candidate tasks are sorted according to their heuristic values
and a quality threshold is set for them, given by
q ¼ maxgj

� c � ðmaxgj
�mingj

Þ. All the candidate tasks with a heu-
ristic value gj greater or equal than q are selected to be in the re-
stricted candidate list (RCL). In the former expression, c is the
diversification–intensification trade-off control parameter. When
c is equal to 1 a completely random choice is obtained, inducing
the maximum possible diversification. In contrast, if c = 0 the
choice is close to a pure greedy decision, with a low diversification.
Proceeding in this way, the RCL size is adaptive and variable, thus
achieving a good diversification–intensification trade-off. In the
last part of the construction step, a task is randomly selected
among those of the RCL. The construction procedure finishes when
all the tasks have been allocated in the needed stations.

On the other hand, randomness is also introduced in the deci-
sion of closing the current station. This is done according to a prob-
ability distribution given by the filling rate of the station (see Eq.
(9)). The filling thresholds approach is also used to achieve a di-
verse enough Pareto front. A different threshold is selected in iso-
lation at each iteration of the multiobjective randomised greedy
algorithm, i.e., the construction procedure of each solution consid-
ers a different threshold. As a consequence, the algorithm uses the
same constructive approach than the MACS algorithm, considering
filling thresholds and closing probabilities at each construction
step. The main difference is the probabilistic criterion to select
the next task that will be included in the current station.

The algorithm is run a number of iterations to generate different
solutions. The final output consists of a Pareto set approximation
composed of the non-dominated solutions among them.

2.3.3. A multiobjective extension of a single-objective genetic
algorithm for the SALBP

An extension of an existing single-objective genetic algorithm
for the SALBP was proposed in Chica et al. (2010) to deal with
the TSALBP-1/3. The authors chose the proposal introduced in Sab-
uncuoglu et al. (2000) and adapted it by means of the state-
of-the-art multiobjective NSGA-II approach. In short, the features
of this TSALBP-NSGA-II designed can be summarised as follows:

� Coding: the original order-based encoding scheme proposed in
Sabuncuoglu et al. (2000) is considered. The length of the chro-
mosome is equal to the number of tasks. The task-station
assignment is implicitly encoded in the genotype and it is
obtained by using a simple station-oriented constructive mech-
anism (Scholl, 1999) guided by fulfilling the available cycle time
of each station. A station is opened and sequentially filled with
the tasks listed in the chromosome order while the overall
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processing time of the set of assigned tasks does not exceed the
assembly line cycle time. Once there is not available time to
place the next task in the current station, this station is closed
and a new empty one is opened to assign the remaining tasks.
The procedure stops when all the tasks are allocated.
� Initial population: it is randomly generated by assuring the fea-

sibility of the precedence relations.
� Crossover: a kind of order preserving crossover (Goldberg,

1989; Bäck, Fogel, & Michalewicz, 1997) is considered to ensure
that feasible offsprings are obtained satisfying the precedence
restrictions. This family of order-based crossover operators
emphasises the relative order of the genes from both parents.
In our case, two different offspring are generated from the
two parents to be mated, proceeding as follows. Two cutting
points are randomly selected for them. The first offspring takes
the genes outside the cutting points in the same sequence order
as in the first parent. That is, from the beginning to the first cut-
ting point and from the second cutting point to the end. The
remaining genes, those located between the two cutting-points,
are filled in by preserving the relative order they have in the
second parent. The second offspring is generated the other
way around, i.e. taking the second parent to fill in the two exter-
nal parts of the offspring and the first one to build the central
part. Notice that, preserving the order of the genes of the other
parent in the central part will guarantee the feasibility of the
obtained offspring solution in terms of precedence relations.
The central genes also satisfy the precedence constraints with
respect to those that are in the two external parts.
� Mutation: the same mutation operator considered in the origi-

nal single-objective genetic algorithm (Sabuncuoglu et al.,
2000), a scramble mutation, is used. A random cut-point is
selected and the genes after the cut-point are randomly
replaced (scrambled), assuring feasibility.
� Diversity: the similarity-based mating scheme for EMO pro-

posed in Ishibuchi, Narukawa, Tsukamoto, and Nojima (2008)
to recombine extreme and similar parents was used in this algo-
rithm to try to improve the diversity and spread of the Pareto
set approximations.

This NSGA-II design for the TSALBP-1/3 showed poor results in
comparison with MACS (Chica et al., 2010). The Pareto front
approximations generated showed a very low cardinality and con-
verged to a narrow region located in the left-most zone of the
objective space (i.e. solutions with small values of the number of
stations, m). The latter fact is justified by the TSALBP-1/3 nature
as a strongly constrained combinatorial optimization problem,
which was not properly tackled by the global search algorithm
considered (a multiobjective genetic algorithm) and by the basic
order encoding used.

Nevertheless, in the next section we will propose an advanced
EMO design able to overcome the problems of the latter basic mul-
tiobjective genetic algorithm and to successfully solve the TSALBP-
1/3.

3. An advanced NSGA-II-based approach for the TSALBP-1/3

As said, the weak performance of the previous EMO algorithm
(Section 2.3.3) when solving the TSALBP-1/3 cannot be explained
because of the chosen multiobjective genetic algorithm. It is well
known that NSGA-II has shown a large success when solving many
different multiobjective numerical and combinatorial optimization
problems (see Chapter 7 in Coello, Lamont, & Van Veldhuizen
(2007) for a detailed review classified in different application
areas). On the contrary, that weak behaviour was due to the inher-
ent characteristics of the combinatorial optimization problem

being solved. In principle, the use of global search procedures as
genetic algorithms could be less appropriate than constructive
metaheuristics to deal with the TSALBP-1/3 because of the hard
constraints (precedence relations and stations’ cycle time limita-
tion). In addition, the representation used does not seem to be ade-
quate because it is not a natural coding for the problem.

Hence, authors propose a novel design, based on the original
NSGA-II search scheme (Deb et al., 2002) as well. However, a more
appropriate representation and more effective operators are used
to solve the TSALBP-1/3. From now on, the new algorithm will be
referred as advanced TSALBP-NSGA-II because of its problem-
specific design and potential application to other TSALBP variants.
The previous method will be referred to as basic TSALBP-NSGA-II in
order to stress the difference between both approaches. The main
features and operators of the advanced TSALBP-NSGA-II are de-
scribed in the next subsections.

3.1. Representation scheme

The most important problem of the basic TSALBP-NSGA-II meth-
od was the representation scheme, based on that usually consid-
ered by the existing genetic algorithm approaches for the SALBP.
We should note that the SALBP is a single-objective problem and
thus it is not strictly necessary to represent a solution as an assign-
ment of tasks to stations to solve it. Instead, an order encoding is
used to define a specific task ordering in a chromosome and the
latter assignment is determined in a constructive fashion, as seen
in Section 2.3.3.

However, the latter representation is not a good choice for the
TSALBP-1/3. It carries the problem of biasing the search to a narrow
area of the Pareto front (as demonstrated by the experimental re-
sults in Chica et al. (2010) and in the current contribution). Here is
where our new proposal, the advanced TSALBP-NSGA-II, takes the
biggest step ahead with respect to the existing basic algorithm.
The new coding scheme introduced will explicitly represent task-
station assignments regardless the cycle time of the assembly line,
thus ensuring a proper search space exploration for the joint opti-
mization of the number and the area of the stations. Furthermore,
the representation will also follow an order encoding to facilitate
the construction of feasible solutions with respect to the prece-
dence relations constraints.

The allocation of tasks among stations is made by employing
separators.1 Separators are thus dummy genes which do not repre-
sent any specific task and they are inserted into the list of genes rep-
resenting tasks. In this way, they define groups of tasks being
assigned to a specific station. The maximum possible number of sep-
arators is n � 1 (with n being the number of tasks), as it would cor-
respond to an assembly line configuration with n stations, each one
composed of a single task. Tasks are encoded using numbers in
{1, . . . ,n}, as in the previous representation, while separators take
values in {n + 1, . . . ,2 � n � 1}. Hence, the genotype is again an or-
der-based representation. Fig. 2 shows an example of the new coding
scheme.

The number of separators included in the genotype is variable
and it depends on the number of existing stations in the current
solution. Therefore, the algorithm works with a variable-length
coding scheme, although its order-based representation nature
avoids the need of any additional mechanism to deal with this is-
sue. The maximum size of the chromosome is 2 � n � 1 to allow the
presence of separators for the maximum number of possible sta-
tions. On the other hand, the representation scheme ensures the
encoded solutions are feasible with respect to the precedence

1 We should notice that, although this representation is not very extended, the use
of separators in an order encoding was previously considered in a document
clustering application (Robertson & Willett, 1994).
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relations constraints. However, the cycle time limitation could be
violated and it will be a task of the genetic operators to ensure fea-
sibility with respect to that constraint.

In summary, the proposed representation shows two advanta-
ges. On the one hand, it is clear and natural and thus it fulfils the
rule of thumb that the genetic coding of a problem should be a nat-
ural expression of it. On the other hand, the genotype keeps on
being a permutation, thus allowing us to consider the extensively
used genetic operators for this representation.

3.2. The crossover operator

The main difficulty arising when using non-standard represen-
tations is the design of a suitable crossover operator able to com-
bine relevant characteristics of the parent solutions into a valid
offspring solution. Nevertheless, as our representation is order-
based, the crossover operator can be designed from a classical or-
der-based one. Crossover operators of the latter kind which have
been suggested in the literature include partially mapped cross-
over (PMX), order crossover, order crossover # 2, position based
crossover, and cycle crossover, among others (Poon & Carter,
1995). We have selected one of the most extended ones, PMX,
which has been already used in other genetic algorithm implemen-
tations for the SALBP (for example in Sabuncuoglu et al. (2000)).

PMX generates two offspring from two parents by means of the
following procedure: (a) two random cut points are selected, (b)
for the first offspring, the genes outside the random points are cop-
ied directly from the first parent, and (c) the genes inside the two
cut points are copied but in the order they appear in the second
parent. The same mechanism is followed up with the second off-
spring but with the opposite parents. See Fig. 3 where an example
of the operator is shown.

Thanks to our advanced coding scheme and to the use of a per-
mutation-based crossover, the feasibility of the offspring with re-
spect to precedence relations is assured. However, since
information about the tasks-stations assignment is encoded inside
the chromosome, it is compulsory to assure that: (a) there is not
any station exceeding the fixed cycle time limit, and (b) there is
not any empty station in the configuration of the assembly line.

Therefore, a repair operator must be applied for each offspring
after crossover. The use of these kinds of operators is very ex-
tended in evolutionary computation when dealing with combina-
torial optimization problems with hard restrictions (Chootinan &
Chen, 2006). They should be carefully developed as a poor design
of the repair operator can bias the convergence of the genetic algo-
rithm or can make the crossover operator lose useful information
from the parents. The goals and methods of our repair operator
are the following:

� Redistribute spare tasks among available stations: changing the
order of the genes in the parents to generate the offspring can
cause the appearance of stations with an excessive cycle time.
The repair operator must reallocate the spare tasks in other sta-
tions. First, the critical stations (those exceeding the cycle time)
and their tasks are localised. Then, the feasible stations avail-
able to reallocate each task of the critical station, fulfilling pre-
cedence and cycle time restrictions, are calculated. If one spare
task can be reallocated in more than one different station,
the algorithm will choose one of them randomly for the

reallocation. This process is repeated till either the critical sta-
tion satisfies the cycle time restriction or there is no feasible
move to be done. In the latter case, the critical station will be
randomly divided in two or more feasible stations by adding
the needed separators to balance the load.
� Removing empty stations: no empty stations are allowed. For

the genotype of the individual, this means that two or more
genes representing separators cannot be placed together. Thus,
the repair operator will find and remove them to only keep the
necessary separators.2

3.3. Mutation operators

Two mutation operators have been specifically designed and
applied uniformly to the selected individuals of the population.
The first one is based on reordering a part of the sequence of tasks
and reassigning them to stations. The second one is introduced to
induce more diversity in order to achieve a well distributed Pareto
front approximation. The need of using the second operator will be
demonstrated in the experimentation carried out in Section 4.3.1.
We respectively call scramble and divider to the two mutation
operators and they are described as follows:

� Scramble mutation: after choosing two points randomly, the
tasks between those points are scrambled forming a new
sequence of tasks in such a way the mutated solution keeps
on being feasible with respect to the precedence relations. The
existing separators among the two mutation points are ignored
and a new reallocation of those tasks is considered by randomly
generating new separator locations within the task sequence.
An illustrative example is in Fig. 4. To do so, a similar mecha-
nism to the filling thresholds of the MACS algorithm have been
followed (see Section 2.3.1). The task sequence is analysed from
left to right and each position has a random choice for the inser-
tion of a separator. The probability distribution associated to
the separator insertion depends on the current station filling
rate according to the cycle time (see Eq. (9)). Besides, it is biased
by a given a threshold defined in [0,1], which represents the
minimum percentage of cycle time filling allowed for the new
defined stations. Only positions making the station filling rate
be higher or equal to alpha are likely to insert a separator and
the random choice is only made in those specific cases. Hence,
a low value of a will promote stations with fewer tasks, thus
favouring the exploration of the left-most region of the Pareto
front (assembly line configurations with a large number of sta-
tions and small area sizes, see Figs. 10 and 14). On the contrary,
high values of the parameter will create stations having more
tasks and being close to the cycle time limit, favouring the
exploration of the right-most region of the Pareto front (config-
urations with a small number of stations and large area sizes).
In this way, the scramble mutation becomes a parameterised
operator with a parameter a defining its search behaviour.
The joint use of different variants of the scramble mutation
operator with different a values will properly explore the differ-
ent parts of the search space in order to converge to the optimal
Pareto front. The experimentation developed in the current con-
tribution shows how better results are achieved when using
two different scramble operators with a equal to 0 and 0.8.
� Divider mutation: this operator was introduced to obtain better

distributed Pareto front approximations generated by the algo-
rithm by looking for those solutions having a larger number of

Fig. 2. Coding scheme example: for the first 8 tasks of the real-world instance of
Nissan, a genotype representing three stations is represented, having 3, 3, and 2
tasks, respectively. Separators are those genes coloured.

2 Notice that, the application of the current operator is not actually needed and it is
more related to aesthetic reasons. The coding scheme, the designed genetic operators
and the multiobjective fitness function would actually allow the algorithm to work
with chromosomes encoding empty stations by directly ignoring them.
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stations with a low area (i.e., the right-most region of the Pareto
front). The operator works as follows (Fig. 5): (a) it randomly
selects one station with more than one task assigned, (b) it
places a separator in the genotype, at a random position, to split
up the current station into two stations.

3.4. Diversity induction mechanism

Finally, in order to additionally increase the diversity of the
search to obtain better distributed Pareto front approximations, a
set of techniques to inject diversity to the algorithm search were
studied. As a result of that study, one successful and very recent
NSGA-II diversity induction mechanism was adopted: Ishibuchi
et al.’s similarity-based mating (Ishibuchi et al., 2008). In this
way, the new design inherits the Ishibuchi et al.’s similarity-based
mating from the existing basic TSALBP-NSGA-II, as this component
helps the algorithm to get a better convergence (see the experi-
mentation developed in Section 4.3.1).

This diversity induction mechanism is based on selecting two
sets of candidates to become the couple of parents to be mated,

with a pre-specified dimension c and d,3 respectively. The chromo-
somes of each set are randomly drawn from the population by a bin-
ary tournament selection. Then, the average objective vector of the
first set is computed. The most distant chromosome to the average
objective vector among the c candidates in this first set is chosen
as the first parent. For the second parent, the most similar chromo-
some to the first parent in the objective space is selected among the
d candidates of the second set.

4. Experiments

This section is devoted to describe the experimental study
developed to test our proposal. We first specify the problem in-
stances, parameter values, and multiobjective performance indica-
tors used for the computational tests. Then, we justify the need of
using all the advanced TSALBP-NSGA-II components in the algo-
rithm design to achieve the best performance. Finally, we bench-
mark our novel technique with respect to the existing basic
TSALBP-NSGA-II and the state-of-the-art algorithm for the
TSALBP-1/3, MACS.

4.1. Problem instances and parameters

Ten problem instances with different features have been se-
lected for the experimentation: arc111 with cycle time limits of
c = 5755 and c = 7520 (P1 and P2), barthol2 (P3), barthold
(P4), lutz2 (P5), lutz3 (P6), mukherje (P7), scholl (P8), wee-
mag (P9), and Nissan (P10). The 10 TSALBP-1/3 instances consid-
ered are publicly available at: http://www.nissanchair.com/
TSALBP. Originally, these instances but Nissan were SALBP-1
instances4 only having time information. However, their area infor-
mation has been created by reverting the task graph to make them
bi-objective (as done in Bautista & Pereira (2007)).

The real-world problem instance (P10) corresponds to the
assembly process of the Nissan Pathfinder engine, assembled at
the Nissan industrial plant in Barcelona (Spain) (Bautista & Pereira,
2007). As this real-world instance has special characteristics be-
cause it shows a lot of tasks having an area of 0, the repair operator
for the crossover of the advanced TSALBP-NSGA-II was imple-
mented by also redistributing the tasks with the highest-area sta-
tion in the developed experiments.

We executed each algorithm 10 times with different random
seeds, setting a fixed run time as stopping criterion (900 s). All
the algorithms were launched in the same computer: Intel Pen-
tium™ D with two CPUs at 2.80 GHz, and CentOS Linux 4.0 as oper-
ating system. Furthermore, the parameters of the developed
algorithms and their operators are shown in Table 1.

Fig. 3. An application example of the crossover operator. The tasks between the two random points are copied following the order of the other parent.

Fig. 4. The scramble mutation is applied to the first 8 tasks of the Nissan instance.
The tasks between the two cut points are scrambled in the offspring.

Fig. 5. The divider mutation is applied to the first 8 tasks of the Nissan instance. A
new separator is chosen at random to split up the second station of the solution in
two new stations.

3 These parameters were originally noted as a and b in the original contribution
(Ishibuchi et al., 2008). However, the notation for c and d have been changed to avoid
misleading the reader with other parameters used in the current paper.

4 Available at http://www.assembly-line-balancing.de.
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4.2. Multiobjective performance indicators

We will consider the two usual kinds of multiobjective perfor-
mance indicators existing in the specialised literature (Zitzler,
Deb, & Thiele, 2000, 2003; Deb, 2001; Knowles & Corne, 2002;
Coello et al., 2007):

� Unary performance indicators: those which measure the quality
of a non-dominated solution set returned by an algorithm.
� Binary performance indicators: those which compare the per-

formance of two different multiobjective algorithms.

The first two subsections review the indicators from each group
which are to be considered in the current contribution. We also
present in the third subsection the use of attainment surface plots
to ease the posterior analysis of results.

4.2.1. Unary performance indicator considered
The hypervolume ratio (HVR) (Coello et al., 2007) has become a

very useful unary performance indicator. Its use is very extended
as it can jointly measure the distribution and convergence of a Par-
eto set approximation. The HVR can be calculated as follows:

HVR ¼ HVðPÞ
HVðP�Þ ; ð10Þ

where HV(P) and HV(P⁄) are the volume (S indicator value) of the
approximate Pareto set and the true Pareto set, respectively. When
HVR equals 1, then the Pareto front approximation and the true Par-
eto front are equal. Thus, HVR values lower than 1 indicate a gener-
ated Pareto front that is not as good as the true Pareto front.

Since we are working with real problems, some obstacles which
make difficult the computation of this performance indicator have
to be kept in mind. First, it should be noticed that the true Pareto
fronts are not known. In our case, a pseudo-optimal Pareto set will
be considered, i.e. an approximation of the true Pareto set, ob-
tained by merging all the Pareto set approximations Pj

i generated
for each problem instance by any algorithm in any run. Thanks
to this pseudo-optimal Pareto set, the HVR performance indicator
values can be computed, considering them in our analysis of
results.

Besides, there is an additional problem with respect to the HVR
performance indicator. In minimization problems, as ours, there is
a need to define a reference point to calculate the volume of a given
Pareto front. If this anti-ideal solution is not correctly chosen, the
HVR values can be unexpected (Knowles & Corne, 2002). Thus,
the anti-ideal solution for each instance is defined as ‘‘logical’’
maximum values for the two objectives in each case. These refer-
ence points are specific for each problem instance.

4.2.2. Binary performance indicators considered
The previous performance indicator allows us to determine the

absolute and individual quality of a Pareto front, but cannot be
used for comparison purposes (Zitzler, Thiele, Laumanns, Fonseca,
& Grunert da Fonseca, 2003). However, binary indicators aim to
compare the performance of two different multiobjective algo-
rithms by comparing the Pareto set approximations generated by
each of them. In this contribution, we will consider two of them:
the � indicator I� and the set coverage indicator C.

The I� indicator (Zitzler et al., 2003) is a quality assessment
method for multiobjective optimization that avoids particular dif-
ficulties of unary and classical methods (Knowles, 2006). Two dif-
ferent definitions are possible: the standard (multiplicative) I� and
the additive indicator I�+. We have opted by the multiplicative indi-
cator. Given two Pareto front approximations, P and Q, the value
I�(P,Q) is calculated as follows:

I�ðP;QÞ ¼ inf �2Rf8z2 2 Q ; 9z1 2 P : z1��z2g ð11Þ

where z1 � �z2 iff z1
i 6 � � z2

i ;8i 2 f1; . . . ; og, with o being the number
of objectives, assuming minimization. I�(P,Q) < I�(Q,P) indicates, in a
weak sense, that the P set is better than the Q set because the min-
imum � value needed so that approximation set P �-dominates Q is
smaller than the � value needed for Q to �-dominate P.

On the other hand, the classical set coverage indicator C (Zitzler
et al., 2000) is computed as follows:

CðP;QÞ ¼ jfq 2 Q ;9p 2 P : p � qgj
jQ j ; ð12Þ

where p � q indicates that the solution p, belonging to the approx-
imate Pareto set P, weakly dominates the solution q of the approx-
imate Pareto set Q in a minimization problem.

Hence, the value C(P,Q) = 1 means that all the solutions in Q are
dominated by or equal to solutions in P. The opposite, C(P,Q) = 0,
represents the situation where none of the solutions in Q are cov-
ered by the set P. Notice that, both C(P,Q) and C(Q,P) have to be
considered, since C(P,Q) is not necessarily equal to 1 � C(Q,P).

The I� and C performance indicator values of the approximation
sets of every pair of algorithms have been represented by boxplots
(see Figs. 7, 9a, 11 and 13a for I�, and Figs. 8, 9b, 12 and 13b for C).
In the figures, each rectangle represents one of the 10 problem in-
stances (ranging from P1 to P10). Inside each rectangle, boxplots
representing the distribution of the I� and C values for a certain pair
of algorithms are drawn. Given Fig. 7 as an example, the top-left
rectangle shows the boxplots comparing three pairs of algorithms:
TN vs. V1, TN vs.V2, and TN vs. V3 (see Section 4.3 for the notations
of these algorithms). As I� and C are binary indicators, two boxplots
have been drawn for each algorithm comparison. The white box-
plots represent the distributions I�(TN,Vx) generated in the 10 runs,
while the coloured boxplots do so for the I�(Vx,TN) values. In each
boxplot, the minimum and maximum values are the lowest and
highest lines, the upper and lower ends of the box are the upper
and lower quartiles, a thick line within the box shows the median,
and the isolated points are the outliers of the distribution.

4.2.3. Attainment surface plots
An attainment surface is the surface uniquely determined by a

set of non-dominated points that divides the objective space into
the region dominated by the set and the region that is not domi-
nated by it (Fonseca & Fleming, 1996). Given r runs of an algorithm,
it would be nice to summarise the r attainment surfaces obtained,
using only one summary surface. Such summary attainment sur-
faces can be defined by imagining a diagonal line in the direction
of increasing objective values cutting through the r attainment sur-
faces generated (see the plot in Fig. 6). The intersection on this line
that weakly dominates at least r � p + 1 of the surfaces and is

Table 1
Used parameter values.

Parameter Value Parameter Value

Basic TSALBP-NSGA-II
Population size 100 Ishibuchi’s c, d values 10
Crossover probability 0.8 Mutation probability 0.1

MACS
Number of ants 10 b 2
q 0.2 q0 0.2
Ants’ thresholds {0.2, 0.4, 0.6,
(2 ants per each) 0.7, 0.9}

Advanced TSALBP-NSGA-II
Population size 100 Ishibuchi’s c, d values 10
Crossover probability 0.8 Mutation probability 0.1
a values for
scramble mutation {0, 0.8}
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weakly dominated by at least p of them, defines one point on the
‘‘pth summary attainment surface’’. In our case, this surface is
the union of all the goals that have been attained in the r = 10 inde-
pendent runs of the algorithm.

Hence, the corresponding attainment surfaces will be repre-
sented in order to allow an easy visual comparison of the perfor-
mance of the different benchmarked algorithms. These graphics
offer a visual and quantitative information (Fonseca & Fleming,
1996), sometimes more useful than numeric values, mainly in
complex problems as ours.

4.3. Experimentation and analysis of results

In this section, we analyse the performance of the advanced
TSALBP-NSGA-II. First, a comparison of three limited variants of
the new proposal is done to ensure the need of using all its fea-
tures. As comparing all the possible algorithm components combi-
nations is excessive, the most significant have been selected. Three
algorithms (V1, V2, and V3) have been selected as variants of the
advanced TSALBP-NSGA-II by removing Ishibuchi’s diversity
operator, the new divider mutation operator, and the scramble

Fig. 6. Five attainment surfaces are shown representing the output of five runs of
an algorithm. The two diagonal lines intersect the five surfaces at various points. In
both cases, the circle indicates the intersection that weakly dominates at least
5 � 3 + 1 = 3 surfaces and is also weakly dominated by at least three surfaces.
Therefore, these two points both lie on the third summary attainment surface
(reprinted from Knowles (2006)).

Fig. 7. Boxplots representing the binary I� indicator values for comparisons between the advanced TSALBP-NSGA-II (TN) and its limited variants (Vx) for instances P1–P9.
White boxplots correspond to I�(TN,Vx) distribution, coloured boxplots to I�(Vx,TN). Lower values indicate better performance.

Fig. 8. Boxplots representing the binary C indicator values for comparisons between the advanced TSALBP-NSGA-II (TN) and its limited variants (Vx) for instances P1–P9.
White boxplots correspond to C(TN,Vx), coloured boxplots to C(Vx,TN). Larger values indicate better performance.
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mutation’s parameters, respectively. Finally, a comparison between
the complete version of the advanced TSALBP-NSGA-II and the state-
of-the-art algorithms for the TSALBP-1/3 is done. The source codes
of all the algorithms considered in the current experimental
study are publicly available at http://www.nissanchair.com/
TSALBP.

4.3.1. Comparison of the advanced TSALBP-NSGA-II variants
We will analyse the performance of the full design of the ad-

vanced TSALBP-NSGA-II algorithm described in Section 3 in compar-
ison with the following three limited variants of it:

� V1. The difference with respect to the complete version is the
lack of use of the Ishibuchi’s operator. As said, this operator is
able to induce more diversity into the search mechanism of
the EMO algorithm in order to generate well distributed Pareto
front approximations.
� V2. It only differs from the complete variant in the absence of

the new divider mutation operator that was explained in Sec-
tion 3.3.
� V3. The components that were suppressed in the V1 and V2

variants, that is Ishibuchi’s diversity induction operator and
the divider mutation operator, are now discarded in conjunc-
tion. In addition, the scramble mutation operator is used with-
out considering the a parameter that controls the filling of the
stations (which is the same that setting a = 0).

We will consider two independent analyses in the current sec-
tion. First, the performance of the advanced TSALBP-NSGA-II algo-
rithm and its three limited variants (V1, V2, and V3) will be
analysed in the first nine problem instances (P1–P9). Later, the
same study is performed in the real-world Nissan instance (P10).

Figs. 7 and 8 show the binary performance indicators compari-
sons for the first nine instances. In the first figure, the I� indicator
values are clearly lower in the case of the former (white boxplots)
than in the latter ones (coloured boxplots) in almost every case.
This means that the performance of the advanced TSALBP-NSGA-II
is significantly better according to this indicator.

With respect to the C indicator (Fig. 8), a similar conclusion is
achieved. The advanced TSALBP-NSGA-II gets better coverage values
than the limited variants in almost all the problem instances: bet-
ter results than V1 in the 9 problem instances, better than V2 in 6
of the 9 instances, and better than V3 in 8 of the 9 instances (all but
P7). V2 gets a better yield than the complete version of the ad-
vanced TSALBP-NSGA-II in P2, P4, and P7.

The quality assessment of the unary performance indicator HVR
for the advanced TSALBP-NSGA-II and its limited variants is shown
in Table 2. Here, the values of the indicator show even clearer re-
sults. The full version of the algorithm gets the best values in all
the problem instances. Therefore, the convergence and distribution
of the Pareto front approximations generated by the advanced
TSALBP-NSGA-II are the highest ones according to this indicator.

The I� and C performance indicators of the Nissan problem in-
stance are shown in Fig. 9 and the HVR values in Table 3. We can
obtain the same conclusions than with the problem instances
P1–P9. There is just a different behaviour in the I� indicator, where
a limited variant, V2, obtains the same performance than the com-
plete version of the algorithm (TN).

The latter global yields can be also observed in the attainment
surfaces of the different problem instances. As an example, we
show those for P3 and P7 in Fig. 10 (two graphics of this kind are
shown in this section due to the lack of space, although similar re-
sults are obtained in every instance). These attainment surfaces
can also help us to find out why the removed components of the
limited variants are needed, as it will be analysed in the following
items:

� First, the Ishibuchi’s diversity induction operator will help the
algorithm to get a better spread Pareto front approximation.
We can draw that conclusion comparing the dashed green line
(corresponding to V1) and the solid blue (that of the advanced
TSALBP-NSGA-II algorithm) line in the attainment surfaces of
Fig. 10.
� On the other hand, the use of a divider mutation operator (sup-

pressed in the V2 variant) and the incorporation of different val-
ues for the a parameter of the scramble mutation operator are
both very important. Consequently, the attainment surfaces of
the V2 and V3 variants are much less spread than the complete
version of the advanced TSALBP-NSGA-II.
� The difference of performance is more important between the

advanced TSALBP-NSGA-II and the V3 variant. In this case, the
V3 variant cannot even achieve the level of convergence of
the complete algorithm as can be seen in the attainment sur-
faces and the HVR performance indicator.

Table 2
Mean and standard deviation �x(r) of the HVR performance indicator values for the
advanced TSALBP-NSGA-II (TN) and its limited variants (Vx) for instances P1–P9.
Higher values indicate better performance.

HVR

P1 P2 P3 P4 P5
TN 0.989 (0) 0.958 (0.02) 0.906 (0.05) 0.955 (0.01) 0.892 (0.06)
V1 0.972 (0.02) 0.914 (0.01) 0.869 (0.03) 0.927 (0.03) 0.835 (0.03)
V2 0.945 (0.04) 0.905 (0.02) 0.855 (0.04) 0.812 (0.06) 0.855 (0.09)
V3 0.915 (0.04) 0.843 (0.03) 0.858 (0.05) 0.778 (0.04) 0.822 (0.02)

P6 P7 P8 P9
TN 0.913 (0.06) 0.916 (0.02) 0.946 (0.04) 0.943 (0.02)
V1 0.885 (0.06) 0.862 (0.04) 0.857 (0.03) 0.915 (0.02)
V2 0.887 (0.06) 0.801 (0.04) 0.856 (0.05) 0.914 (0.03)
V3 0.831 (0.08) 0.801 (0.03) 0.836 (0.04) 0.907 (0.03)

Fig. 9. The corresponding boxplots representing the binary indicators values for
comparisons between the advanced TSALBP-NSGA-II (TN) and its limited variants
(Vx) for the Nissan problem instance (P10).

Table 3
Mean and standard deviation �xðrÞ of the HVR performance
indicator values for the advanced TSALBP-NSGA-II (TN) and its
limited variants (Vx) for the Nissan problem instance. Higher
values indicate better performance.

HVR
P10 (Nissan)

TN 0.884 (0.07)
V1 0.796 (0.06)
V2 0.884 (0.06)
V3 0.815 (0.07)

112 M. Chica et al. / Computers & Industrial Engineering 61 (2011) 103–117



Author's personal copy

Consequently and in view of this experimental study, it can be
concluded that every included component in the advanced TSALBP-
NSGA-II helps to increase the performance of the algorithm, and the
absence of any of them induces a considerable fall both in the con-
vergence and diversity of the Pareto set approximations generated.
It is thus clear that all the designed components are required to
achieve the best diversification–intensification trade-off in the
multiobjective search space.

4.3.2. Comparison of our proposal with the state-of-the-art algorithms
The MACS algorithm, reviewed in Section 2.3.1, achieved the

best results for the solving of the TSALBP-1/3 in comparison with
the multiobjective randomised greedy algorithm and the basic
TSALBP-NSGA-II (Chica et al., 2010). Although the latter one reached
better solutions in a specific small region of the Pareto front than
the MACS algorithm, its behaviour was worse in the rest of the
Pareto front, as already explained. The latter fact motivated us to

design an EMO algorithm able to outperform the MACS algorithm
in all the Pareto front, the goal of the present work.

In this section, these two algorithms are compared, the state-
of-the-art MACS and the basic TSALBP-NSGA-II, with our complete
proposal, the advanced TSALBP-NSGA-II. We use the same multiob-
jective performance indicators considered in the previous section
and proceed in the same way performing two independent analysis
(P1–P9 and P10).

The results corresponding to the two binary indicator values on
the first nine instances are represented by means of boxplots in
Figs. 11 and 12. The respective HVR values are included in Table
4. Besides, attainment surfaces for some instances are plotted in
Fig. 14.

In view of the results corresponding to the I� and the C indica-
tors in Figs. 11 and 12, a clear conclusion can be drawn: the ad-
vanced TSALBP-NSGA-II outperforms both MACS and the basic
TSALBP-NSGA-II without any doubt.
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Fig. 10. Attainment surface plots for the P3 and P7 problem instances.
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The same fact is observed analysing the unary indicator HVR re-
sults. The convergence and diversity of the advanced TSALBP-NSGA-
II is higher than those of the state-of-the-art algorithms in all the
instances. The overall good performance of the advanced TSALBP-
NSGA-II can be clearly observed in the attainment surfaces of

Fig. 14. There is a high distance between the attainment surfaces
obtained by the advanced TSALBP-NSGA-II and those corresponding
to the remaining algorithms in the P2, P3, and P8 instances. Notice
that in the plot of the P3 instance the attainment surfaces of the
limited V1, V2, and V3 variants of the advanced TSALBP-NSGA-II
are also included. It can be observed that not only the complete

Fig. 11. Boxplots representing the binary I� indicator values for comparisons between the advanced TSALBP-NSGA-II (TN) and the state-of-the-art algorithms (MACS and
BasTN) for instances P1 to P9. White boxplots correspond to I�(TN,MACS/BasTN), coloured boxplots to I�(MACS/BasTN,TN). Lower values indicate better performance.

Fig. 12. Boxplots representing the binary C indicator values for comparisons between the advanced TSALBP-NSGA-II (TN) and the state-of-the-art algorithms (MACS and
BasTN) for instances P1–P9. White boxplots correspond to C(TN,MACS/BasTN), coloured boxplots to C(MACS/BasTN,TN). Larger values indicate better performance.

Fig. 13. The corresponding boxplots representing the binary indicators values for
comparisons between the advanced TSALBP-NSGA-II (TN) and the state-of-the-art
algorithms (MACS and BasTN) for the Nissan problem instance.

Table 4
Mean and standard deviation �xðrÞ of the HVR performance indicator values for the
advanced TSALBP-NSGA-II (TN), and the state-of-the-art algorithms, MACS (S1) and the
basic TSALBP-NSGA-II (S2) for instances P1–P9. Higher values indicate better
performance.

HVR

P1 P2 P3 P4 P5
TN 0.989 (0) 0.958 (0.02) 0.906 (0.05) 0.955 (0.01) 0.892 (0.06)
S1 0.763 (0) 0.766 (0.01) 0.722 (0.01) 0.723 (0.02) 0.599 (0.02)
S2 0.762 (0.03) 0.700 (0.03) 0.639 (0.07) 0.134 (0.06) 0.008 (0.01)

P6 P7 P8 P9
TN 0.913 (0.06) 0.916 (0.02) 0.946 (0.04) 0.943 (0.02)
S1 0.585 (0.02) 0.740 (0.01) 0.514 (0.01) 0.820 (0.01)
S2 0.546 (0.03) 0.434 (0.05) 0.157 (0) 0.432 (0.2)
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version of the TSALBP-NSGA-II achieves better results than MACS
and the basic TSALBP-NSGA-II. Its limited variants are also better
optimisers for this TSALBP-1/3 instance.

The case of the real-world instance of Nissan is analysed in view
of the performance indicators of Fig. 13 and the HVR values of Table
5. The behaviour of the algorithms is similar to that reported for
the latter instances. The only exception is the I� indicator, where
the MACS algorithm gets slightly better results than the advanced
TSALBP-NSGA-II. Regarding the attainment surface of the Nissan in-
stance (Fig. 15), although the convergence of the advanced TSALBP-
NSGA-II is clearly higher than the rest of the algorithms, the MACS
algorithm achieves the two most extreme solutions of the
pseudo-optimal Pareto front which are not found by the advanced
TSALBP-NSGA-II. This is the reason why the value of the I� indicator
associated to the MACS algorithm was slightly better than the one
obtained by the advanced TSALBP-NSGA-II, although the latter
method is showing the best overall convergence to the pseudo-
optimal Pareto front.

According to the previous analysis of the performance indica-
tors and attainment surfaces, we can assert that the advanced
TSALBP-NSGA-II outperforms the state-of-the-art algorithms in all
the considered problem instances, Nissan included.

5. Concluding remarks

A novel multiobjective genetic algorithm design has been pro-
posed to tackle the TSALBP-1/3 resulting in a new approach called
the advanced TSALBP-NSGA-II. The need of all the main components
of the proposal has been justified in a experimental study. The per-
formance of this new technique has been compared with the state-
of-the-art algorithms, the MACS multiobjective ACO approach and
a previous multiobjective extension of an existing genetic algo-
rithm for the SALBP, called basic TSALBP-NSGA-II. The comparisons
were carried out using up-to-date multiobjective performance
indicators. The advanced TSALBP-NSGA-II clearly outperformed the
latter two methods when solving nine of the 10 TSALBP-1/3 in-
stances considered as well as it also showed an advantage in the
real-world Nissan problem instance.

It has been demonstrated that the existing basic TSALBP-NSGA-II
showed a poor performance due to the use of non-appropriate rep-
resentation and genetic operators to solve the problem. Since the
TSALBP-1/3 is a very complex combinatorial optimization problem
with strong constraints, a deep study of the best design options for
the specific context was mandatory to get a high performance
problem solving technique. Therefore, it has been demonstrated
that multiobjective genetic algorithms are suitable to solve these
kind of multiobjective assembly line balancing problems if a good
design is used.

Future work will be devoted to: (a) apply a local search proce-
dure to increase the performance of the algorithms, (b) add inter-
active preferences into the advanced TSALBP-NSGA-II to guide the
search to the Pareto front regions preferred by the expert (Chica,
Cordón, Damas, Bautista, & Pereira, 2008b, 2009, 2011), and (c)
perform some further improvements in the advanced TSALBP-
NSGA-II to slightly increase the spread of the Pareto front it gener-
ates in order to get even better results in the Nissan instance.
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Fig. 14. Attainment surface plots for the P2, P3, and P8 problem instances.

Table 5
Mean and standard deviation �xðrÞ of the HVR performance
indicator values for the advanced TSALBP-NSGA-II (TN) and the
state-of-the-art algorithms, MACS (S1) and the basic TSALBP-
NSGA-II (S2) for the Nissan problem instance. Higher values
indicate better performance.

HVR
P10 (Nissan)

TN 0.884 (0.07)
S1 0.849 (0.01)
S2 0.316 (0.03)
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